Днк - что это такое, фото. Московская лаборатория ДНК-генеалогии начала работу! Цепь молекулы днк

Дезоксирибонуклеиновая кислота (ДНК) - это присутствующая в каждом организме и в каждой живой , главным образом в её ядре, нуклеиновая кислота, содержащая в качестве сахара дезоксирибозу, а в качестве азотистых оснований аденин, гуанин, цитозин и тимин. Играет очень важную биологическую роль, сохраняя и передавая по наследству генетическую информацию о строении, развитии и индивидуальных признаках любого организма. Препараты ДНК можно получить из различных тканей животных и растений, а также из бактерий и ДНК-содержащих .

ДНК - биополимер, состоящий из многих мономеров - дезоксирибонуклеотидов, соединённых через остатки фосфорной кислоты в определённой последовательности, специфичной для каждой индивидуальной ДНК. Уникальная последовательность дезоксирибонуклеотидов в данной молекуле ДНК представляет собой кодовую запись биологической информации. Две такие полинуклеотидные цепочки образуют в молекуле ДНК двойную спираль (см. рис. 1), в которой комплементарные основания - аденин (А) с тимином (Т) и гуанин (Г) с цитозином (Ц) - связаны друг с другом при помощи водородных связей и так называемых гидрофобных взаимодействий. Такая характерная структура обусловливает не только биологические свойства ДНК, но и её физико-химические особенности.

Нажмите на картинку для увеличения:

Рис. 1. Схема двойной спирали молекулы ДНК (модель Уотсона и Крика): А - аденин; Т - тимин; Г - гуанин; Ц - цитозин; Д - дезоксирибоза; Ф - фосфат

Большое число фосфатных остатков делает ДНК сильной многоосновной кислотой (полианионом), которая присутствует в тканях в виде солей. Наличие пуриновых и пиримидиновых оснований обусловливает интенсивное поглощение ультрафиолетовых лучей с максимумом при длине волны около 260 ммк. При нагревании растворов ДНК связь между парами оснований ослабевает и при некоторой температуре, характерной для данной ДНК (обычно 80 - 90°), две полинуклеотидные цепочки отделяются друг от друга (плавление, или денатурация, ДНК).

Нативные молекулы ДНК обладают очень высокой молярной массой - до сотен миллионов. Лишь в митохондриях, а также некоторых вирусах и бактериях молярная масса ДНК значительно меньше; в этих случаях молекулы ДНК имеют кольцевую (иногда, например, у фага ∅Х174, однонитевую) или, реже, линейную структуру. В клеточном ядре ДНК находится преимущественно в виде ДНК-протеидов - комплексов с (главным образом гистонами), образующих характерные ядерные структуры - хромосомы и хроматин. У особи данного вида в ядре каждой соматическую клетки (диплоидной клетки тела) содержится постоянное количество ДНК; в ядрах половых клеток (гаплоидных) оно вдвое ниже. При полиплоидии количество ДНК выше и пропорционально плоидности. Во время деления клетки количество ДНК удваивается в интерфазе (в так называемом синтетическом, или «S»-периоде, - между G1- и G2-периодами ). Процесс удвоения ДНК (репликация) заключается в развёртывании двойной спирали и синтезе на каждой полинуклеотидной цепи новой, комплементарной ей, цепочки. Таким образом, каждая из двух новых молекул ДНК, идентичных старой молекуле, содержит по одной старой и одной вновь синтезированной полинуклеотидной цепочке.

Биосинтез ДНК происходит из богатых свободной энергией нуклеозидтрифосфатов под действием фермента ДНК-полимеразы. Сначала синтезируются небольшие участки полимера, которые затем соединяются в более длинные цепи под действием фермента ДНК-лигазы. Вне организма биосинтез ДНК идёт в присутствии всех 4 типов дезоксирибонуклеозидтрифосфатов, соответствующих ферментов и ДНК - матрицы, на которой синтезируется комплементарная нуклеотидная последовательность. Американскому учёному, биохимику Артуру Корнбергу, впервые осуществившему эту реакцию в 1967 году, удалось получить путём ферментативного синтеза вне организма биологически активную ДНК вируса. В 1968 году индийский и американский молекулярный биолог Хар Гобинд Корана синтезировал химически полидезоксирибонуклеотид, соответствующий структурному гену (цистрону) ДНК.

ДНК служит также матрицей для синтеза рибонуклеиновых кислот (РНК), определяя тем самым их первичную структуру (транскрипция). Через посредство информационной РНК (и-РНК) осуществляется трансляция - синтез специфических белков, структура которых задана ДНК в виде определённой нуклеотидной последовательности. Итак, если РНК переносит биологическую информацию, «записанную» в молекулах ДНК, на синтезируемые молекулы белков, то ДНК сохраняет эту информацию и передаёт её по наследству. Эта роль ДНК доказывается тем, что очищенная ДНК одного штамма бактерий способна передавать др. штамму признаки, характерные для штамма-донора, а также тем, что ДНК вируса, обитавшего в скрытом состоянии в бактериях одного штамма, способна переносить участки ДНК этих бактерий на другой штамм при заражении его этим вирусом и воспроизводить соответствующие признаки у штамма-реципиента. Таким образом, наследственные задатки (гены) материально воплощены в определённой последовательности нуклеотидов в участках молекулы ДНК и могут передаваться от одного индивидуума другому вместе с этими участками. Наследственные изменения организмов (мутации) связаны с изменением, выпадением или включением азотистых оснований в полинуклеотидные цепочки ДНК и могут быть вызваны физическими или химическими воздействиями.

Выяснение строения молекул ДНК и их изменение - путь к получению наследственных изменений у животных, растений и микроорганизмов, а также к исправлению наследственных дефектов. (советский и российский учёный, биохимик, академик РАМН, профессор Илья Борисович Збарский (26 октября 1913, Каменец-Подольский — 9 ноября 2007, Москва))

В 1977 году английский биохимик Фредерик Сенгер предложил метод расшифровки первичной структуры ДНК, основанный на ферментативном синтезе высокорадиоактивной комплементарной последовательности ДНК на изучаемой однонитевой ДНК как на матрице. В результате исследований в области нуклеиновых кислот в 1980 Сенгеру и американцу У. Гилберту была присуждена половина Нобелевской премии «за вклад в определение последовательности оснований в нуклеиновых кислотах». Другая половина премии была присуждена американцу П. Бергу.

Подробнее про ДНК читайте в литературе:

  • Химия и биохимия нуклеиновых кислот, под редакцией И. Б. Збарского и Сергея Сергеевича Дебова, Л., 1968;
  • Нуклеиновые кислоты, перевод с английского , под редакцией И. Б. Збарского, М., 1966;
  • Джеймс Уотсон. Молекулярная биология гена, пер. с англ., М., 1967;
  • Дэвидсон Дж., Биохимия нуклеиновых кислот, пер. с англ., под редакцией Андрея Николаевича Белозерского, М., 1968. И. Б. Збарский;
  • Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки в 3-х томах. - М.: Мир, 1994. - 1558 с. - ISBN 5-03-001986-3;
  • Докинз Р. Эгоистичный ген. - М.: Мир, 1993. - 318 с. - ISBN 5-03-002531-6;
  • История биологии с начала XX века до наших дней. - М.: Наука , 1975. - 660 с.;
  • Льюин Б. Гены. - М.: Мир, 1987. - 544 с.;
  • Пташне М. Переключение генов. Регуляция генной активности и фаг лямбда. - М.: Мир, 1989. - 160 с.;
  • Уотсон Дж. Д. Двойная спираль: воспоминания об открытии структуры ДНК. - М.: Мир, 1969. - 152 с.

Найти ещё что-нибудь интересное:

Молекулярная генетика раздел генетики, который занимается изучением наследственности на молекулярном уровне.

Нуклеиновые кислоты. Репликация ДНК. Реакции матричного синтеза

Нуклеиновые кислоты (ДНК, РНК) были открыты в 1868 году швейцарским биохимиком И.Ф. Мишером. Нуклеиновые кислоты – линейные биополимеры, состоящие из мономеров – нуклеотидов.

ДНК – структура и функции

Химическую структуру ДНК расшифровали в 1953 г. американский биохимик Дж. Уотсон и английский физик Ф. Крик.

Общая структура ДНК. Молекула ДНК состоит из 2 цепей, которые закручены в спираль (рис. 11) одна вокруг другой и вокруг общей оси. Молекулы ДНК могут содержать от 200 до 2х10 8 пар нуклеотидов. Вдоль спирали молекулы ДНК соседние нуклеотиды располагаются на расстоянии 0,34 нм друг от друга. Полный оборот спирали включает 10 пар нуклеотидов. Его длина составляет 3,4 нм.

Рис . 11 . Схема строения ДНК (двойная спираль)

Полимерность молекулы ДНК. Молекула ДНК – биоплоимер состоит из сложных соединений – нуклеотидов.

Строение нуклеотида ДНК. Нуклеотид ДНК состоит из 3 звеньев: одно из азотистых оснований (аденин, гуанин, цитозин, тимин); дезокисирибоза (моносахарид); остаток фосфорной кислоты (рис. 12).

Различают 2 группы азотистых оснований:

    пуриновые – аденин (А), гуанин (Г), содержащие два бензольных кольца;

    пиримидиновые – тимин (Т), цитозин (Ц), содержащие одно бензольное кольцо.

В состав ДНК входят следующие виды нуклеотидов: адениновый (А); гуаниновый (Г); цитозиновый (Ц); тиминовый (Т). Названия нуклеотидов соответствуют названиям азотистых оснований, входящих в их состав: адениновый нуклеотид азотистое основание аденин; гуаниновый нуклеотид азотистое основание гуанин; цитозиновый нуклеотид азотистое основание цитозин; тиминовый нуклеотид азотистое основание тимин.

Соединение двух цепей ДНК в одну молекулу

Нуклеотиды А, Г, Ц и Т одной цепи соединены соответственно с нуклеотидами Т, Ц, Г и А другой цепи водородными связями . Между А и Т формируется две водородные связи, а между Г и Ц – три водородные связи (А=Т, Г≡Ц).

Пары оснований (нуклеотидов) А – Т и Г – Ц называют комплементарными, т. е. взаимно соответствующими. Комплементарность – это химическое и морфологическое соответствие нуклеотидов друг другу в парных цепочках ДНК.

5 3

1 2 3

3’ 5’

Рис. 12 Участок двойной спирали ДНК. Строение нуклеотида (1– остаток фосфорной кислоты; 2– дезоксирибоза; 3– азотистое основание). Соединение нуклеотидов с помощью водородных связей.

Цепи в молекуле ДНК антипараллельны, т. е. направлены в противоположные стороны, так что 3’- конец одной цепи располагается напротив 5’- конца другой цепи. Генетическая информация в ДНК записана в направлении от 5’ конца к 3’ концу. Эта нить называется смысловой ДНК,

поскольку здесь расположены гены. Вторая нить – 3’–5’ служит эталоном хранения генетической информации.

Cоотношение между числом разных оснований в ДНК установлено Э. Чаргаффом в 1949 г. Чаргафф выявил, что у ДНК различных видов количество аденина равно количеству тимина, а количество гуанина – количеству цитозина.

Правило Э. Чаргаффа :

    в молекуле ДНК количество A (адениновых) нуклеотидов всегда равно количеству Т (тиминовых) нуклеотидов или отношение ∑ А к ∑ Т=1. Сумма Г (гуаниновых) нуклеотидов равна сумме Ц (цитозиновых) нуклеотидов или отношение ∑ Г к ∑ Ц=1;

    сумма пуриновых оснований (А+Г) равна сумме пиримидиновых оснований (Т+Ц) или отношение ∑ (А+Г) к ∑ (Т+Ц)=1;

Способ синтеза ДНК – репликация . Репликация – это процесс самоудвоения молекулы ДНК, осуществляемый в ядре под контролем ферментов. Самоудовоение молекулы ДНК происходит на основе комплементарности – строгого соответствия нуклеотидов друг другу в парных цепочках ДНК. В начале процесса репликации молекула ДНК раскручивается (деспирализуется) на определенном участке (рис. 13), при этом освобождаются водородные связи. На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимиразы, синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, содержащиеся в цитоплазме клеток. Эти нуклеотиды выстраиваются комплементарно нуклеотидам двух материнских цепей ДНК. Фермент ДНК-полимераза присоединяет комплементарные нуклеотиды к матричной цепи ДНК. Например, к нуклеотиду А матричной цепи полимераза присоединяет нуклеотид Т и, соответственно, к нуклеотиду Г – нуклеотид Ц (рис. 14). Сшивание комплементарных нуклеотидов происходит с помощью фермента ДНК-лигазы . Так путем самоудвоения синтезируются две дочерние цепи ДНК.

Образовавшиеся две молекулы ДНК из одной молекулы ДНК представляют собой полуконсервативную модель , поскольку состоят из старой материнской и новой дочерней цепей и являются точной копией материнской молекулы (рис. 14). Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерней.

Рис . 13 . Деспирализация молекулы ДНК с помощью фермента

1

Рис . 14 . Репликация – образование двух молекул ДНК из одной молекулы ДНК: 1 – дочерняя молекула ДНК; 2 – материнская (родительская) молекула ДНК.

Фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’ –> 5’. Поскольку комплементарные цепи в молекуле ДНК направлены в противоположные стороны, и фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’–>5’, то и синтез новых цепей идет антипараллельно (по принципу антипараллельности ).

Место локализации ДНК . ДНК содержится в ядре клетки, в матриксе митохондрий и хлоропластов.

Количество ДНК в клетке постоянно и составляет 6,6х10 -12 г.

Функции ДНК:

    Хранение и передача в ряду поколений генетической информации молекулам и - РНК;

    Структурная. ДНК является структурной основой хромосом (хромосома на 40% состоит из ДНК).

Видоспецифичность ДНК . Нуклеотидный состав ДНК служит критерием вида.

РНК, строение и функции.

Общая структура .

РНК – линейный биополимер, состоящий из одной полинуклеотидной цепи. Различают первичную и вторичную структуры РНК. Первичная структура РНК представляет собой одноцепочечную молекулу, а вторичная структура имеет форму креста и характерна для т- РНК.

Полимерность молекулы РНК . Молекула РНК может включать от 70 нуклеотидов до 30 000 нуклеотидов. Нуклеотиды, входящие в состав РНК, следующие: адениловый (А), гуаниловый (Г), цитидиловый (Ц), урациловый (У). В составе РНК тиминовый нуклеотид замещен на урациловый (У).

Строение нуклеотида РНК.

Нуклеотид РНК включает 3 звена:

    азотистое основание (аденин, гуанин, цитозин, урацил);

    моносахарид – рибоза (в рибозе присутствует кислород при каждом атоме углерода);

    остаток фосфорной кислоты.

Способ синтеза РНК – транскрипция . Транскрипция, как и репликация, – реакция матричного синтеза. Матрицей является молекула ДНК. Реакция протекает по принципу комплементарности на одной из цепей ДНК (рис. 15). Процесс транскрипции начинается с деспирализации молекулы ДНК на определенном участке. На транскрибируемой цепи ДНК имеется промотор – группа нуклеотидов ДНК, с которой начинается синтез молекулы РНК. К промотору присоединяется фермент РНК-полимераза . Фермент активизирует процесс транскрипции. По принципу комплементарности достраиваются нуклеотиды, поступающие из цитоплазмы клетки к транскрибируемой цепи ДНК. РНК-полимераза активизирует выстраивание нуклеотидов в одну цепь и формирование молекулы РНК.

В процессе транскрипции выделяют четыре стадии: 1) связывание РНК-полимеразы с промотором; 2) начало синтеза (инициация); 3) элонгация – рост цепи РНК, т. е. происходит последовательное присоединение нуклеотидов друг к другу; 4) терминация – завершение синтеза и-РНК.

Рис . 15 . Схема транскрипции

1 – молекула ДНК (двойная цепочка); 2 – молекула РНК; 3–кодоны; 4– промотор.

В 1972 г. американские ученые – вирусолог Х.М. Темин и молекулярный биолог Д. Балтимор на вирусах в опухолевых клетках открыли обратную транскрипцию. Обратная транскрипция – переписывание генетической информации с РНК на ДНК. Процесс протекает с помощью фермента обратной транскриптазы .

Виды РНК по функции

    Информационная, или матричная РНК (и-РНК, или м-РНК) переносит генетическую информацию с молекулы ДНК к месту синтеза белка – в рибосому. Синтезируется в ядре при участии фермента РНК-полимеразы. Она составляет 5% от всех видов РНК клетки. и- РНК включает от 300 нуклеотидов до 30 000 нуклеотидов (самая длинная цепь среди РНК).

    Транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка,– в рибосому. Имеет форму креста (рис. 16) и состоит из 70 – 85 нуклеотидов. Ее количество в клетке составляет 10-15 % РНК клетки.

Рис. 16. Схема строения т-РНК: А–Г – пары нуклеотидов, соединенные с помощью водородных связей; Д – место прикрепления аминокислоты (акцепторный участок); Е – антикодон.

3. Рибосомная РНК (р-РНК) синтезируется в ядрышке и входит в состав рибосом. Включает примерно 3000 нуклеотидов. Составляет 85% РНК клетки. Этот вид РНК содержатся в ядре, в рибосомах, на эндоплазматической сети, в хромосомах, в матриксе митохондрий, а также в пластидах.

Основы цитологии. Решение типовых задач

Задача 1

Сколько тиминовых и адениновых нуклеотидов содержится в ДНК, если в ней обнаружено 50 цитозиновых нуклеотидов, что составляет 10% от всех нуклеотидов.

Решение. По правилу комплементарности в двойной цепи ДНК цитозин всегда комплемпентарен гуанину. 50 цитозиновых нуклеотидов составляют 10%, следовательно, согласно правилу Чаргаффа, 50 гуаниновых нуклеотидов также составляют 10%, или (если ∑Ц =10%, то и ∑Г =10%).

Сумма пары нуклеотидов Ц + Г равна 20%

Сумма пары нуклеотидов Т + А = 100% – 20 % (Ц + Г) = 80 %

Для того, чтобы узнать, сколько тиминовых и адениновых нуклеотидов содержится в ДНК, нужно составить следующую пропорцию:

50 цитозиновых нуклеотидов → 10 %

Х (Т + А) →80 %

Х = 50х80:10=400 штук

Согласно правилу Чаргаффа ∑А= ∑Т, следовательно ∑А=200 и ∑Т=200.

Ответ: количество тиминовых, как и адениновых нуклеотидов в ДНК, равно 200.

Задача 2

Тиминовые нуклеотиды в ДНК составляют 18% от общего количества нуклеотидов. Определите процент остальных видов нуклеотидов, содержащихся в ДНК.

Решение. ∑Т=18%. Согласно правилу Чаргаффа ∑Т=∑А, следовательно на долю адениновых нуклеотидов также приходится 18 % (∑А=18%).

Сумма пары нуклеотидов Т+А равна 36 % (18 % + 18 % = 36 %). На пару нуклеотидов Ги Ц приходится: Г+Ц=100 % –36 %=64 %. Поскольку гуанин всегда комплементарен цитозину, то их содержание в ДНК будет равным,

т. е. ∑ Г= ∑Ц=32%.

Ответ : содержание гуанина, как и цитозина, составляет 32 %.

Задача 3

20 цитозиновых нуклеотидов ДНК составляют 10% от общего количества нуклеотидов. Сколько адениновых нуклеотидов содержится в молекуле ДНК?

Решение. В двойной цепочке ДНК количество цитозина равно количеству гуанина, следовательно, их сумма составляет: Ц+Г=40 нуклеотидов. Находим общее количество нуклеотидов:

20 цитозиновых нуклеотидов → 10 %

Х (общее количество нуклеотидов) →100 %

Х=20х100:10=200 штук

А+Т=200 – 40=160 штук

Так как аденин комплементарен тимину, то их содержание будет равным,

т. е. 160 штук: 2=80 штук, или ∑А=∑Т=80.

Ответ : в молекуле ДНК содержится 80 адениновых нуклеотидов.

Задача 4

Допишите нуклеотиды правой цепи ДНК, если известны нуклеотиды ее левой цепи: АГА – ТАТ – ГТГ – ТЦТ

Решение. Построение правой цепи ДНК по заданной левой цепи производится по принципу комплементарности – строгого соответствия нуклеотидов друг другу: аденонивый – тиминовый (А–Т), гуаниновый – цитозиновый (Г–Ц). Поэтому нуклеотиды правой цепи ДНК должны быть следующие: ТЦТ – АТА – ЦАЦ – АГА.

Ответ : нуклеотиды правой цепи ДНК: ТЦТ – АТА – ЦАЦ – АГА.

Задача 5

Запишите транскрипцию, если транскрибируемая цепочка ДНК имеет следующий порядок нуклеотидов: АГА – ТАТ – ТГТ – ТЦТ.

Решение . Молекула и-РНК синтезируется по принципу комплеиентарности на одной из цепей молекулы ДНК. Нам известен порядок нуклеотидов в транскрибируемой цепи ДНК. Следовательно, надо построить комплементарную цепь и-РНК. Следует помнить, что вместо тимина в молекулу РНК входит урацил. Следовательно:

Цепь ДНК: АГА – ТАТ – ТГТ – ТЦТ

Цепь и-РНК: УЦУ – АУА –АЦА –АГА.

Ответ : последовательность нуклеотидов и-РНК следующая: УЦУ – АУА – АЦА –АГА.

Задача 6

Запишите обратную транскрипцию, т. е. постройте фрагмент двухцепочечной молекулы ДНК по предложенному фрагменту и-РНК, если цепочка и- РНК имеет следующую последовательность нуклеотидов:

ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА

Решение. Обратная транскрипция – это синтез молекулы ДНК на основе генетического кода и-РНК. Кодирующая молекулу ДНК и-РНК имеет следующий порядок нуклеотидов: ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА. Комплементарная ей цепочка ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА – ТЦТ. Вторая цепочка ДНК: ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Ответ : в результате обратной транскрипции синтезированы две цепочки молекулы ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА и ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Генетический код. Биосинтез белка.

Ген – участок молекулы ДНК, содержащий генетическую информацию о первичной структуре одного определенного белка.

Экзон-интронная структура гена эукариот

    промотор – участок ДНК (длиной до 100 нуклеотидов), к которому присоединяется фермент РНК-полимераза , необходимый для осуществления транскрипции;

2) регуляторная зона – зона, влияющая на активность гена;

3) структурная часть гена – генетическая информация о первичной структуре белка.

Последовательность нуклеотидов ДНК, несущая генетическую информацию о первичной структуре белка – экзон . Они также входят в состав и-РНК. Последовательность нуклеотидов ДНК, не несущая генетическую информацию о первичной структуре белка – интрон . Они не входят в состав и-РНК. В ходе транскрипции с помощью специальных ферментов происходит вырезание копий интронов из и-РНК и сшивание копий экзонов при образовании молекулы и-РНК (рис. 20). Этот процесс называется сплайсинг .

Рис . 20 . Схема сплайсинга (формирование зрелой и-РНК у эукариот)

Генетический код – система последовательности нуклеотидов в молекуле ДНК, или и-РНК, которая соответствует последовательности аминокислот в полипептидной цепи.

Свойства генетического кода:

    Триплетность (АЦА – ГТГ – ГЦГ…)

Генетический код является триплетным, так как каждая из 20 аминокислот кодируется последовательностью трех нуклеотидов (триплетом , кодоном) .

Существует 64 вида триплетов нуклеотидов (4 3 =64).

    Однозначность (специфичность)

Генетический код является однозначным, так как каждый отдельный триплет нуклеотидов (кодон) кодирует только одну аминокислоту, или один кодон всегда соответствует одной аминокислоте (таблица 3).

    Множественность (избыточность, или вырожденность)

Одна и та же аминокислота может кодироваться несколькими триплетами (от 2 до 6), т. к. белокобразующих аминокислот –20, а триплетов – 64.

    Непрерывность

Считывание генетической информации происходит в одном направлении, слева направо. Если произойдет выпадение одного нуклеотида, то при считывании его место займет ближайший нуклеотид из соседнего триплета, что приведет к изменению генетической информации.

    Универсальность

Генетический код характерен для всех живых организмов, и одинаковые триплеты кодируют одну и ту же аминокислоту у всех живых организмов.

    Имеет стартовые и терминальные триплеты (стартовый триплет – АУГ, терминальные триплеты УАА, УГА, УАГ). Эти виды триплетов не кодируют аминокислоты.

    Неперекрываемость (дискретность)

Генетический код является неперекрывающимся, так как один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов. Нуклеотиды могут принадлежать только одному триплету, а если переставить их в другой триплет, то произойдет изменение генетической информации.

Таблица 3 – Таблица генетического кода

Основания кодонов

Примечание: сокращенные названия аминокислот даны в соответствии с международной терминологией.

Биосинтез белка

Биосинтез белка – вид пластического обмена веществ в клетке, происходящий в живых организмах под действием ферментов. Биосинтезу белка предшествуют реакции матричного синтеза (репликация – синтез ДНК; транскрипция – синтез РНК; трансляция – сборка молекул белка на рибосомах). В процессе биосинтеза белка выделяют 2 этапа:

    транскрипция

    трансляция

В ходе транскрипции генетическая информация, заключенная в ДНК, находящейся в хромосомах ядра, передается молекуле РНК. По завершении процесса транскрипции и-РНК выходит в цитоплазму клетки через поры в мембране ядра, располагается между 2 субъединицами рибосомы и участвует в биосинтезе белка.

Трансляция – процесс перевода генетического кода в последовательность аминокислот. Трансляция осуществляется в цитоплазме клетки на рибосомах, которые располагаются на поверхности ЭПС (эндоплазматической сети). Рибосомы – сферические гранулы, диаметром, в среднем, 20 нм, состоящие из большой и малой субъединиц. Молекула и-РНК располагается между двумя субъединицами рибосомы. В процессе трансляции участвуют аминокислоты, АТФ, и-РНК, т-РНК, фермент амино-ацил т-РНК-синтетаза.

Кодон – участок молекулы ДНК, или и-РНК, состоящий из трех последовательно расположенных нуклеотидов, кодирующий одну аминокислоту.

Антикодон – участок молекулы т-РНК, состоящий из трех последовательно расположенных нуклеотидов и комплементарный кодону молекулы и-РНК. Кодоны комплементарны соответствующим антикодонам и соединяются с ними с помощью водородных связей (рис. 21).

Синтез белка начинается со стартового кодона АУГ . От него рибосома

перемещается по молекуле и-РНК, триплет за триплетом. Аминокислоты поступают по генетическому коду. Встраивание их в полипептидную цепь на рибосоме происходит с помощью т-РНК. Первичная структура т-РНК (цепочка) переходит во вторичную структуру, напоминающую по форме крест, и при этом в ней сохраняется комплементарность нуклеотидов. В нижней части т-РНК имеется акцепторный участок, к которому присоединяется аминокислота (рис.16). Активизация аминокислоты осуществляется при помощи фермента аминоацил т-РНК-синтетазы . Суть этого процесса состоит в том, что данный фермент взаимодействует с аминокислотой и с АТФ. При этом формируется тройной комплекс, представленный данным ферментом, аминокислотой и АТФ. Аминокислота обогащается энергией, активизируется, приобретает способность образовывать пептидные связи с соседней аминокислотой. Без процесса активизации аминокислоты полипептидная цепь из аминокислт сформироваться не может.

В противоположной, верхней части молекулы т-РНК содержится триплет нуклеотидов антикодон , с помощью которого т-РНК прикрепляется к комплементарному ему кодону (рис. 22).

Первая молекула т-РНК, с присоединенной к ней активизированной аминокислотой, своим антикодоном прикрепляется к кодону и-РНК, и в рибосоме оказывается одна аминокислота. Затем прикрепляется вторая т-РНК своим антикодоном к соответствующему кодону и-РНК. При этом в рибосоме оказываются уже 2 аминокислоты, между которыми формируется пептидная связь. Первая т-РНК покидает рибосому, как только отдаст аминокислоту в полипептидную цепь на рибосоме. Затем к дипептиду присоединяется 3-я аминокислота, ее приносит третья т-РНК и т. д. Синтез белка останавливается на одном из терминальных кодонов – УАА, УАГ, УГА (рис. 23).

1 – кодон и-РНК; кодоны UCG – УЦГ ; CUA – ЦУА ; CGU – ЦГУ ;

2– антикодон т-РНК; антикодон GAT – ГАТ

Рис . 21 . Фаза трансляции: кодон и-РНК притягивается к антикодону т-РНК соответствующими комплементарными нуклеотидами (основаниями)

Кто мы и откуда берут начало наши корни? Люди все чаще и чаще задают себе этот вопрос, ведь 21 век - это век постоянных изменений в многонациональном мире. И зачастую многие не знают своих предков. А анализ ДНК все больше набирает популярность в выявлении генетических корней человека. И желание узнать, вполне справедливо.

ДНК - ЧТО ЭТО?

Но вначале полезно узнать из чего состоит ДНК . ДНК - представляет собой дезоксирибонуклеиновую кислоту, которая несет в себе всю генетическую информацию. Она входит в состав хромосом и определяет все наследственные признаки человека. Данный феномен используют для , пола ребенка, этнического происхождения и многих других исследований, о которых пойдет речь ниже.

Интересная информация о том, что входит в состав ДНК. В 1953г. ученые Крик и Уотсон в результате длительных исследований установили, что ДНК - это 2 спиралеобразные нити полинуклеотидов, которые связаны между собой. Основание каждой нити состоит из аденина, тимина, гуанина и цитозина. Они идут в паре и в определенной последовательности: аденин + тимин; гуанин + цитозин . Эта порядок строго индивидуален и именно на его выявлении основано ДНК тестирование.

ЧТО ТАКОЕ ДНК ТЕСТ?

Анализ ДНК воистину делает невозможное возможным. Этот метод нашел широкое применение не только в криминалистике для идентификации и установления истинного преступника, но и, что называется в «мирных целях». Данное исследование на сегодняшний день стало доступным и проводится во всех крупных городах. Помимо установления отцовства, пола ребенка, этнического происхождения, о которых упоминалось выше это еще и тест ДНК на генетическое происхождение, и многие другие исследования. Внимание! При этом анализе выявляется гаплотип - это своеобразная дискета, на которой хранятся все персональные данные о наследственности. А они в свою очередь формируются при зачатии. Поэтому точность определения национальности по тесту ДНК сводится лишь к возможности установления принадлежности индивида к той или иной национальной группе. Из чего напрашивается следующий вывод: тест ДНК на национальность неправомерен еще и ввиду того, что национальность понятие политическое и указывался до недавних пор, а в некоторых странах и до сих пор указывается в паспорте в отдельной графе. Данная информация поможет принять решение - стоит ли делать анализ ДНК на национальность. Но в тоже время ДНК экспертиза поможет установить этническое происхождение. Выделяют 4 основные группы:

  1. Европейскую.
  2. Африканскую.
  3. Тихоокеанскую.
  4. Восточноазиатскую.

А уже в ходе исследования внутри каждой группы устанавливают более точные маркеры в 23 парах хромосом. Следует отметить, что обычно не встречаются группы в чистом виде, в связи с этим присутствие каждой их них выражается в процентах. В дальнейшем проводят более детальное уточнение процентного соотношения, что позволяет определить этническое происхождение каждого конкретного человека и дать максимально точный ответ на поставленный вопрос.

КАКОЙ МАТЕРИАЛ МОЖНО СДАВАТЬ ДЛЯ ИССЛЕДОВАНИЯ?

Для этой цели можно сдать:

  1. Стандартные образцы - эпителий с внутренней стороны щеки. Он берется ватной палочкой.
  2. Нестандартные образцы -
  • Фрагменты ногтей и костей
  • Зубные щетки
  • Окурки
  • Носовые платки
  • Волосы
  • Жвачки и т.д.

Чтобы получить более полную информацию о методе сбора и способе доставки образцов для проведения анализа ДНК в городе Москва, а также как сдать ДНК тест в Санкт-Петербурге, позвоните по телефонам: Время ожидания результата составляет 3-5 недель, в среднем - 1 месяц. Дается гарантия полной анонимности и конфиденциальности.

Дезоксирибонуклеиновая кислота (ДНК ) - макромолекула (одна из трёх основных, две другие - РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака, а Нобелевскую премию, увы, не дают посмертно.

    История изучения

    Структура молекулы

    Нуклеотиды

    Двойная спираль

    Образование связей между спиралями

    Химические модификации оснований

    Повреждения ДНК

    Суперскрученность

    Структуры на концах хромосом

    Биологические функции

    Структура генома

    Последовательности генома, не кодирующие белок

    Транскрипция и трансляция

    Репликация

    Взаимодействие с белками

    Структурные и регуляторные белки

    Ферменты, модифицирующие ДНК

    Топоизомеразы и хеликазы

    Нуклеазы и лигазы

    Полимеразы

    Генетическая рекомбинация

    Эволюция метаболизма, основанного на ДНК

    Список литературы

    История изучения

ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1868 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин , а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Мклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши Чейз 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинды Франклин, так как премия не присуждается посмертно.

Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями. А в 1985-1986 годах Максим Давидович Франк-Каменецкий в Москве показал, как двухспиральная ДНК складывается, в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК.

    Структура молекулы.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.

Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5"-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C-N) по 1"-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза). Пример нуклеотида - аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (показан на рисунке).

Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) - шестичленным гетероциклом.

В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований - урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК.

Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК.

    Двойная спираль.

Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов сахаров. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3"-гидроксильной (3"-ОН) группой молекулы дезоксирибозы одного нукдеотида и 5"-фосфатной группой (5"-РО 3) другого. Асимметричные концы цепи ДНК называются 3" (три прим) и 5" (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3"-концу).

Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3"-конца к 5"-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).

Ширина двойной спирали составляет от 22 до 24 А, или 2,2 - 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.

В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторные транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин - с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий и стекинга, которые не зависят от последовательности оснований ДНК.

Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.

Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ - тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.

Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.

Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ. Средний уровень метилирования отличается у разных организмов, так, у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночный обнаружен высокий уровень метилирования - до 1 %. Другие модификации оснований включают метилирование аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах.

Метилирование цитозина с образованием 5-метилцитозина в промоторной части гена коррелирует с его неактивным состоянием. Метилирование цитозина важно также для инактивации у млекопитающих. Метилирование ДНК используется в геномном импринтинге. Значительные нарушения профиля метилирования ДНК происходит при канцерогенезе.

Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций.

НК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация - ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями.

Оксиданты, такие как свободные радикалы или пероксид водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований. Среди разных типов повреждений наиболее опасные - это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.

Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых - бензопирен, акридины, афлатоксин. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака.

Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное - в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное - в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами - топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.

На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков - поддержание целостности концов хромосом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Поскольку обычные ДНК-полимеразы не могут реплицировать 3" концы хромосом, это делает специальный фермент - теломераза.

В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадроплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом.

На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля.

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов - наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии геном в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых - сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков - в активный центр рибосомы, «ползущей» по иРНК.

Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. Молекулы ДНК находятся в плотно упакованном, конденсированном состоянии.В клетках эукариот ДНК располагается главным образом в ядре в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом. Генетическая информация генома состоит из генов. Ген - единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные, например, промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.

У многих видов только малая часть общей последовательности генома кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) - одна из неразрешённых научных загадок; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК.

В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» (англ. junk DNA ). Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом. Часто встречающаяся форма некодирующих последовательностей человека - псевдогены, копии генов, инактивированные в результате мутаций. Эти последовательности нечто вроде молекулярных мскопаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов. Другой источник разнообразия белков в организме - это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге. Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например, мяРНК. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало полиаденилированным РНК, а исследование и генома мыши показало, что 62 % его транскрибируется.

Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT CAG TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируетсярибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4³ комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны - TAA, TGA, TAG.

Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент строит полинуклеотидную цепь, находя правильное основание через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а только лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов (праймере), синтезируемой праймазой. Так как ДНК-полимеразы могут строить цепочку только в направлении 5" --> 3", для копирования антипараллельных цепей используются разные механизмы.

Все функции ДНК зависят от её взаимодействия с белками. Взаимодействия могут быть неспецифическими, когда белок присоединяется к любой молекуле ДНК, или зависеть от наличия особой последовательности. Ферменты также могут взаимодействовать с ДНК, из них наиболее важные - это РНК-полимеразы, которые копируют последовательность оснований ДНК на РНК в транскрипции или при синтезе новой цепи ДНК - репликации.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру -нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков - различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе, и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз.

Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру - нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.