Энергия поверхностного слоя жидкости. Поверхностное натяжение

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка м (радиус молекулярного действия). На молекулу , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление ).

Чтобы переместить молекулу , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности.

Пусть площадь свободной поверхности изменилась на , при этом поверхностная энергия изменилась на , где a - коэффициент поверхностного натяжения.

Так как для этого изменения необходимо совершить работу

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр .

Коэффициент поверхностного натяжения - величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на единицу при изотермическом процессе.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности.

Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Пример: капля жидкости в состоянии невесомости имеет сферическую форму.

Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр­ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност­ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемая поверхностной энергией, пропорциональна площади слоя DS :

где s - поверхностное натяжение.

Так как равновесное состояние характеризуется минимумом потенциальной энер­гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю­дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготения.

Итак, условием устойчивого равновесия жидкости является минимум поверхност­ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень­шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну­той упругой пленке, в которой действуют силы натяжения.

Под действием сил поверхностного натяжения (направлены по касательной к поверх­ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положение, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу

где f - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Из рис. 97 видно, что DlDx = DS , т. е.

Эта работа совершается за счет уменьшения поверхностной энергии, т. е.

Из сравнения выражений (66.1) - (66.3) видно, что

т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения - ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м 2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10 –2 -10 –1 Н/м. Поверхностное натяжение с повышением тем­пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными . Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 10 –2 до 4,5 10 –2 Н/м). Поверхностно-активными веществами, пони­жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде.

Когда вода из опрокинутого стакана разливается по полу или когда мы выдуваем мыльный пузырь, поверхность жидкости увеличивается. При этом возникают новые участки разреженного поверхностного слоя. Среднее расстояние между молекулами при их переходе из глубины жидкости на ее поверхность возрастает. Силы притяжения между молекулами жидкости совершают при этом отрицательную работу. В соответствии с законами механики это означает увеличение потенциальной энергии молекул, перешедших из глубины жидкости на поверхность.

Молекулы поверхностного слоя жидкости обладают избытком потенциальной энергии по сравнению с энергией, которой эти молекулы обладали бы, находясь внутри жидкости.

Избыточную потенциальную энергию, которой обладают молекулы на поверхности жидкости, называют поверхностной энергией.

С макроскопической (термодинамической) точки зрения поверхностная энергия - это один из видов внутренней энергии, отсутствующая у газов, но имеющаяся у жидкостей*.

* Поверхностной энергией обладают также твердые тела. Ведь особые условия, в которых находятся молекулы на поверхности жидкости, характерны и для поверхности твердых тел.

При растекании воды из опрокинутого стакана по полу увеличение энергии молекул поверхностного слоя происходит за счет работы силы тяжести. А при выдувании мыльного пузыря увеличение потенциальной энергии молекул поверхностного слоя происходит за счет работы сил давления воздуха в пузыре. Ведь для того чтобы пузырь раздувался, давление воздуха в нем должно быть больше атмосферного.

Поверхностное натяжение

Молекулы на всех участках поверхностного слоя жидкости находятся в одинаковых условиях, и два участка одинаковой площади обладают одинаковой поверхностной энергией. Это означает, что поверхностная энергия прямо пропорциональна площади поверхности жидкости. Поэтому отношение поверхностной энергии U n участка поверхности жидкости к площади S этого участка есть величина постоянная, не зависящая от площади S . Эту величину называют коэффициентом поверхностного натяжения или просто поверхностным натяжением и обозначают буквой σ:

Поверхностное натяжение представляет собой удельную поверхностную энергию, т. е. энергию, приходящуюся на поверхность единичной площади.

В СИ поверхностное натяжение выражается в джоулях на квадратный метр (Дж/м 2). Так как 1 Дж = 1 Н · м, то поверхностное натяжение можно выражать ив ньютонах на метр (Н/м).

Поверхностное натяжение а зависит от природы граничащих сред и от температуры. По мере повышения температуры различие между жидкостью и ее насыщенным паром постепенно стирается и при критической температуре исчезает совсем. Соответственно поверхностное натяжение для границы жидкость - насыщенный пар с повышением температуры уменьшается и при критической температуре становится равным нулю.

Из формулы (7.3.1) следует, что

(7.3.2)

Следовательно, при уменьшении площади поверхности поверхностная энергия уменьшается. Молекулярные силы совершают при этом положительную работу, так как расстояния между молекулами при переходе их из поверхностного слоя в глубь жидкости уменьшаются. В состоянии равновесия жидкости поверхностная энергия имеет минимальное значение. Это соответствует минимальной при заданном объеме площади поверхности. Поэтому, как говорилось в § 7.1, жидкость принимает форму шара, если нет других сил, искажающих ее естественную сферическую форму.

В поверхностном слое жидкости запасена энергия, прямо пропорциональная площади поверхности. Поверхностная энергия - одна из форм внутренней энергии.

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.


Рис. 9.3. Действие межмолекулярных сил в объеме и на поверхности

Равнодействующая всех этих сил равна 0. Молекула, находящаяся на поверхности, испытывает притяжение только внутренних молекул (газ из-за своей разряженности взаимодействует слабо), равнодействующая этих сил направлена внутрь тела, т.е. явно выражено стремление к втягиванию поверхностных молекул внутрь тела, поверхность тела как бы находится в натянутом состоянии и стремится к своему сокращению. Поскольку действие сил на поверхностные молекулы не скомпенсировано, такие молекулы обладают свободной поверхностной энергией. Дадим определение.

Свободная поверхностная энергия – это избыток энергии молекул поверхностного слоя по сравнению с молекулами, находящимися внутри DE = E* – E ср.

Эта энергия зависит от природы вещества соприкасающихся фаз, от температуры и площади раздела фаз.

S – площадь раздела фаз, м 2 ;

s – коэффициент пропорциональности, называемый коэффициентом поверхностного натяжения (или просто поверхностное натяжение), Дж/м 2 .

Как известно, любая система стремится к минимуму энергии. Чтобы уменьшить свободную поверхностную энергию (F s = sS) у системы есть два пути: уменьшить поверхностное натяжение s или

площадь поверхности раздела фаз S .

Уменьшение s происходит при адсорбции веществ на твердых и жидких поверхностях (это является движущей силой адсорбции), при растекании одной жидкости по другой.

Стремление к уменьшению площади поверхности S приводит к слиянию частиц дисперсной фазы, к их укрупнению (при этом удельная поверхность сокращается), т.е. в этом кроется причина термодинамической неустойчивости дисперсных систем.

Стремление жидкости к уменьшению поверхности приводит к тому, что она стремится принять форму шара. Математические расчеты показывают, что наименьшую площадь при постоянном объеме имеет шар, поэтому частицы жидкости принимают шарообразную форму, если только эти капли не расплющиваются под действием силы тяжести. Капли ртути на поверхности приобретают форму шариков. Сферическую форму планет также приписывают действию поверхностных сил.

Поверхностное натяжение

Физический смысл коэффициента поверхностного натяжения (s) можно истолковать с разных точек зрения.

1.Свободная поверхностная энергия (удельная поверхностная энергия)

Из выражения 9.3. следует

[Дж/м 2 ], (9.4)

где F s – свободная поверхностная энергия, Дж;

Отсюда следует физический смысл s – это свободная поверхностная энергия молекул поверхностного слоя на площади 1 м 2 (или на другой единичной площади), т.е. удельная поверхностная энергия.

Чем больше коэффициент s, тем больше величина поверхностной энергии (см. табл. 9.1.).

2. Работа по созданию новой поверхности

Поскольку энергия – это мера работоспособности, то, заменяя F s на W, получаем:

[Дж/м 2 ], (9.5)

где W – работа по созданию новой поверхности раздела фаз, Дж;

S – площадь поверхности раздела фаз, м 2 .

Из выражения 9.5 следует, что s – это работа, которую надо совершить, чтобы в изотермических условиях увеличить на единицу площадь поверхности раздела фаз при неизменном объеме жидкости (т.е. перенести соответствующее число молекул жидкости из объема в поверхностный слой).

Например, при разбрызгивании жидкости совершается работа, которая переходит в свободную поверхностную энергию (при разбрыз-гивании поверхность раздела фаз многократно увеличивается). Такая же работа затрачивается при дроблении твердых тел.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей при переводе молекул из объема в поверхностный слой, то очевидно, что поверхностное натяжение является мерилом сил межмолекулярного взаимодействия внутри жидкости. Чем полярнее жидкость, тем сильнее взаимодействие между молекулами, тем сильнее поверхностные молекулы втягиваются внутрь, тем выше значение s.

Из жидкостей наибольшее значение s у воды (см. табл. 9.1.). Это неслучайно, поскольку между молекулами воды образуются достаточно прочные водородные связи. В неполярных углеводородах между молекулами существуют только слабые дисперсионные взаимодействия, поэтому поверхностное натяжение у них небольшое. Еще больше значение s у жидкой ртути. Это свидетельствует о значительном межатомном взаимодействии (и о большой величине свободной поверхностной энергии).

Высоким значением s характеризуются твердые тела.

Поверхностная сила

Есть также силовое толкование поверхностного натяжения. Исходя из размерности коэффициента поверхностного натяжения Дж/м 2 , можно записать

Таким образом, поверхностное натяжение – это поверхностная сила, приложенная к единице длины контура, ограничивающего поверхность и направленная на сокращение поверхности раздела фаз .

Существование этой силы наглядно иллюстрируется опытом Дюпре. На жесткой проволочной рамке закреплена подвижная перемычка (рис. 9.2). В рамке натянута мыльная пленка (положение 1). Чтобы растянуть эту пленку до положения 2, надо приложить силу F 1 , которой противодействует сила поверхностного натяжения F 2 . Эта сила направлена вдоль поверхности (по касательной), перпендикулярно к контуру, ограничивающему поверхность. Для пленки на рис. 9.2 роль части контура играет подвижная перемычка.


Рис. 9.3. Действие сил поверхностного натяжения

Таким образом, силы поверхностного натяжения обладают следующими свойствами:

1) равномерно распределены по линии раздела фаз;

Поверхностное натяжение возникает на всех поверхностях раздела фаз. В соответствии с агрегатным состоянием этих фаз введены следующие обозначения:

s Ж-Г (на границе жидкость – газ)

s Ж1-Ж2 (на границе двух несмешивающихся жидкостей)

s Т-Г (на границе твердое тело – газ)

s Т-Ж (на границе твердое тело – жидкость)

Значения коэффициентов поверхностного натяжения некоторых веществ на границе с воздухом и на некоторых межжидкостных границах приведены в табл. 9.3.

Непосредственно экспериментально можно определить поверхност-ное натяжение на границе жидкость – газ и жидкость – жидкость. Методы определения поверхностного натяжения на границе с твердым телом основаны на косвенных измерениях.

Методы определения поверхностного натяжения делятся на три группы: статические, полустатические и динамические.

Статическими методами определяется поверхностное натяжение практически неподвижных поверхностей, образованных задолго до начала измерений и поэтому находящихся в равновесии с объемом жидкости. К этим методам относятся метод капиллярного поднятия и метод лежащей или висящей капли (пузырька).

Динамические методы основаны на том, что некоторые виды механических воздействий на жидкость сопровождаются периодическими растяжениями и сжатиями ее поверхности, на которые влияет поверхностное натяжение. Этими методами определяется неравновесное значение s. К динамическим методам относятся методы капиллярных волн и колеблющейся струи.

Полустатическими называются методы определения поверхностного натяжения границы раздела фаз, возникающей и периодически обновляемой в процессе измерения (метод максимального давления пузырька и сталагмометрический метод), а также методы отрыва кольца и втягивания пластины. Эти методы позволяют определить равновесное значение поверхностного натяжения, если измерения проводятся в таких условиях, что время в течение которого происходит формирование поверхности раздела, значительно больше времени установления равновесия в системе.

Таблица 9.3

Поверхностное натяжение (удельная поверхностная энергия)

некоторых веществ на границе с воздухом (298 К)

Вещество s, мДж/м 2 Вещество s, мДж/м 2
Жидкость Твердые тела
Гексан 18,4 Лед (270 К)
Октан 21,8 Кварц
Этанол 22,0 MgO
Бензин 25,0 Алюминий
Бензол 28,2 Железо
Уксусная кислота 27,8 Вольфрам
Муравьиная кислота 36,6 Алмаз
Анилин 43,2 Полимеры
Вода 71,95 Политетрафторэтилен 18,5
Ртуть 473,5 Полиэтилон 31,0
Жидкость – жидкость Полистирол 33,0
Бензол – вода 34,4 Поливинилхлорид 40,0
Анилин – вода 4,8 Плексиглас 38,0
Хлороформ – вода 33,8 Эмаль К-2 31,7

Метод капиллярного поднятия

Поднятие жидкости в капилляре (если жидкость хорошо смачивает стенки капилляра) обуславливается поверхностным натяжением. Между поверхностным натяжением и высотой поднятия жидкости в капилляре (рис. 9.4) существует следующая зависимость

, (9.7)

где s – поверхностное натяжение; h – высота поднятия столба жидкости; r 2 и r 1 – плотности жидкости и насыщенного пара; g – ускорение свободного падения; q – краевой угол смачивания; r – радиус капилляра.

Для проведения эксперимента необходимы: капилляр диаметром 0,2-0,3 мм; сосуд, в который заливается исследуемая жидкость; катетометр для измерения высоты поднятия жидкости (точность ± 1 мкм) и устройство для подсветки мениска.

Наибольшие трудности вызывает измерение краевого угла смачивания q. Поэтому этот метод удобнее всего применять для жидкостей, у которых q = 0 0 .



Рис. 9.4. Поднятие жидкости в капилляре

Это условие соблюдается для воды и многих органических жидкостей. Так как cos 0 0 = 1, то выражение (9.7) упрощается и может быть использовано для расчета s. Метод капиллярного поднятия – один из самых точных методов определения поверхностного натяжения.