Скрещивание гомозигот какой закон менделя. Основы генетики: законы Менделя

Закон расщепления, или второй закон Менделя.

Если потомков первого поколения, одинаковых по изу­чаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в оп­ределенном числовом соотношении: 3 / 4 особей будут иметь доминантный признак, ¼ рецессивный:

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть кото­ рого несет доминантный признак, а часть - рецессив­ ный, называется расщеплением. Следовательно, рецес­сивный признак у гибридов первого поколения не исчез, а был только подавлен и проявится во втором гибридном поколении.

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. В гибриде присутствуют оба фактора - доминантный и рецессивный, но в виде признака проявляется доми­нантный наследственный фактор, рецессивный же по­давляется. Связь между поколениями при половом раз­множении осуществляется через половые клетки - га­ меты. Следовательно, необходимо допустить, что каж­дая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, бу­дет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слия­ние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет при­водить к развитию организма с доминантным призна­ком.

Расщепление потомства при скрещивании гетерози­готных особей Мендель объяснил тем, что гаметы гене­тически чисты, т. е. несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? Известно, что в каж­дой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромо­сомы содержат два одинаковых гена. Генетически «чис­тые» гаметы образуются следующим образом: при слиянии мужских и женских гамет получается гибрид с диплоидным (двойным) набором хромосом.

Как видно из схемы (приложение 2), половину хромосом зигота по­лучает от отцовского организма, половину - от мате­ринского.

В процессе образования гамет у гибрида гомологич­ные хромосомы во время I мейотического деления также попадают в разные клетки.

По данной аллельнои паре образуются два сорта гамет. При оплодотворении гаметы, несущие одинако­вые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при доста­точно большом количестве гамет в потомстве 25 % гено­типов будут гомозиготными доминантными, 50 % - ге­терозиготными, 25 % - гомозиготными рецессивными, т. е. устанавливается отношение 1АА:2Аа:1 аа.

Соответственно по фенотипу потомство второго по­коления при моногибридном скрещивании распределя­ется в отношении 3:1 (¾ особей с доминантным при­знаком, ¼ особей с рецессивным).

Цитологической основой расщепления признаков при моногибридном скрещивании является расхождение гомологичных хромосом к разным полюсам клетки и образование гаплоидных половых клеток в мейозе.

В рассмотренных выше примерах правило единообразия выражалось в том, что все гибриды внешне были похожи на одного из родителей. Это наблюдается не всегда. Часто признаки у Гетерозиготных форм носят промежуточный характер, т.е. доминирование может быть не полным. Схема скрещивания двух наследственных форм растения Ночная красавица:

Одна из них обладает красными цветками (и это доминантный признак), а другая – белыми. На схеме видно, что все гибриды первого поколения имеют розовые цветки. Во втором поколении происходит расщепление в отношении 1:2:1, т.е. один красный цветок (гомозигота), два розовых цветка (гетерозигота), один белый (гомозигота). Это явление получило название неполное доминирование.

При неполном доминировании доминантный ген в гетерозиготном состоянии не всегда полностью подавляет рецессивный ген. В ряде случаев гибрид fi не воспроизводит полностью ни одного из родительских признаков и признак носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения единообразны по данному признаку. Неполное доминирование - широко распространен­ное явление. Оно обнаружено при изучении наследова­ния окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических при­знаков у человека и т. д. Промежуточные признаки, возникающие вследствие неполного доминирования, нередко представляют эстетическую или материальную ценность для человека. Возникает вопрос: можно ли вы­вести путем отбора, например, сорт ночной красавицы с розовой окраской цветков? Очевидно, нет, потому что этот признак развивается только у гетерозигот и при скрещивании их между собой всегда происходит рас­щепление:

Неполное доминирование - широко распространен­ное явление. Оно обнаружено при изучении наследова­ния окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических при­знаков у человека и т. д. Промежуточные признаки, возникающие вследствие неполного доминирования, нередко представляют эстетическую или материальную ценность для человека. Возникает вопрос: можно ли вы­вести путем отбора, например, сорт ночной красавицы с розовой окраской цветков? Очевидно, нет, потому что этот признак развивается только у гетерозигот и при скрещивании их между собой всегда происходит рас­щепление.

Закон независимого комбинирования, или третий закон Менделя.

Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания, т.е. скрещивание родительских форм, различающихся по двум парам признаков.

Для дигибридного скрещивания Мендель взял гомо­зиготные растения гороха, отличающиеся по двум показателям - окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки - желтая окраска (А) и гладкая форма (В) семян. Каж­дое растение образует один сорт гамет по изучаемым аллелям: При слиянии гамет все потомство будет единообразным:

Решетка Паннета

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав . Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали - гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая (9:3:3:1). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Это можно выразить алгебраически как квадрат двучлена

(3+1)² = 3² +2·3+1² или 9+3+3+1

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов. Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Условия соблюдения законов наследования Менделя

Законы открытые Грегором Менделем применимы в генетике не всегда. Существуют многие условия соблюдения законов Менделя. Для таких случаев существуют другие законы (например: закон Моргана), или объяснения.

Сформулируем основные условия соблюдения законов наследования.

Для соблюдения закона единообразия гибридов первого поколения необходимо, чтобы:

    родительские организмы были гомозиготными;

    гены разных аллелей находились в различных хромосомах, а не в одной (иначе может произойти явление «сцепленного наследования»).

Закон расщепления будет соблюдаться, если

    у гибридов наследственные факторы сохраняются в неизменном виде;

Закон независимого распределения генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь слу­чае.

    если пары аллельных генов расположены в разных парах гомологичных хромосом.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью; постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

Заключение.

Законы Грегора Менделя, в настоящее время, имеют широкое применение в селекции растений, животных и микроорганизмов, в медицине, генной инженерии и многих других отраслях жизни человека.Также Они применяются в решении задач по генетике.

Важно заметить, что Мендель формулировал законы и делал выводы во времена, когда ни о ДНК, ни о генах и хромосомах было ни чего не известно. Однако он оказался совершенно прав, и хотя и не сразу, но его теории были признаны и взяты за основу развивающейся науки – генетики.

Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Список используемой литературы.

Общая биология: Учебник для 9-10 кл. ср. шк./Полянский Ю.И., Браун А. Д., Верзилин Н. М. и др.; М.: Просвещение, 1987. -287 с.: ил.законов Менделя пришел к выводу, что предрасположенность к рождению... влияют на частоты генотипов в популяции. Законы Менделя ничего не говорят нам о частотах...

32 Тонкая структура гена. Особенности у эу- и прокариот. Понятие о транскриктоне.

Прокариоты (лат. про – перед и гр. карион – ядро) – это древнейшие организмы, не имеющие оформленного ядра. Носителем наследственной информации у них является молекула ДНК, которая образует нуклеоид. В цитоплазме прокариотической клетки нет многих органоидов, которые имеются у эукариотической клетки (митохондрий, эндоплазматической сети, аппарата Гольджи и т.д.; функции этих органоидов выполняют ограниченные мембранами полости). В прокариотической клетке имеются рибосомы. Большинство прокариот имеет размер 1–5 мкм. Размножаются они путем деления без выраженного полового процесса. Прокариоты обычно выделяют в надцарство. К ним относят бактерии, синезеленые водоросли (цианеи, или цианобактерии), риккетсии, микоплазмы и ряд других организмов.

Эукариоты (гр. эу – хорошо и карион – ядро) – организмы, в клетках которых есть четко оформленные ядра, имеющие собственную оболочку (кариолемму) (рис. 1, 2). Ядерная ДНК у них заключена в хромосомы. В цитоплазме эукариотических клеток имеются различные органоиды, выполняющие специфические функции (митохондрии, эндоплазматическая сеть, аппарат Гольджи, рибосомы и т.д.). Большинство эукариотических клеток имеет размер порядка 25 мкм. Размножаются они митозом или мейозом (образуя половые клетки – гаметы или споры у растений); изредка встречается амитоз – прямое деление, при котором не происходит равномерного распределения генетического материала (например, в клетках эпителия печени). Эукариоты также выделяют в особое надцарство, которое включает царства грибов, растений и животных

Транскриптон.

Синтез молекул РНК начинается в определенных местах ДНК, называемых промоторами, и завершается в терминаторах. Участок ДНК, ограниченный промотором и терминатором, представляет собой единицу транскрипции (Lewin B., 1980) - транскриптон. В пределах каждого транскриптона копируется только одна из двух нитей ДНК, которая называется значащей или матричной. Во всех транскриптонах, считываемых в одном направлении, значащей является одна нить ДНК; в транскриптонах, считываемых в противоположном направлении, значащей является другая нить ДНК. Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК, а могут и перекрываться, в частности так, что в пределах участка перекрывания матричными оказываются обе нити. Разбиение ДНК на множество транскриптонов обеспечивает возможность независимого считывания разных генов, их индивидуального включения и выключения. У эукариот в состав транскриптона, как правило, входит только один ген.Термины "транскрипционная единица" или "транскриптон" по смыслу близки термину "ген", но они не всегда совпадают. Так, транскрипционные единицы прокариот, как правило, заключают в себе генетическую информацию нескольких генов и называются оперонами. Продуктами транскрипции оперонов являются полицистронные мРНК, в результате трансляции которых рибосомами образуется несколько белков. Белки, кодируемые полицистронными мРНК, обычно функционально связаны друг с другом и обеспечивают протекание какого-либо метаболического процесса, например, биосинтеза определенной аминокислоты или утилизацию углеводов в качестве источника углерода.

Усовершенствование гибридиологического метода позволило Г. Менделю выявить ряд важнейших закономерностей наследования признаков у гороха, которые, как оказалось впоследствии, справедливы для всех диплоидных организмов, размножающихся половым путем.

Описывая результаты скрещиваний, сам Мендель не интерпретировал установленные им факты как некие законы. Но после их переоткрытия и подтверждения на растительных и животных объектах, эти повторяющиеся при определенных условиях явления стали называть законами наследования признаков у гибридов.

Некоторые исследователи выделяют не три, а два закона Менделя. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.

Крупная научная удача Менделя состояла в том, что выбранные им семь признаков определялись генами на разных хромосомах, что исключало возможное сцепленное наследование. Он обнаружил, что:

1) У гибридов первого поколения присутствует признак только одной родительской формы, а другой «исчезает». Это закон единообразия гибридов первого поколения.

2) Во втором поколении наблюдается расщепление: три четверти потомков имеют признак гибридов первого поколения, а четверть - «исчезнувший» в первом поколении признак. Это закон расщепления.

3) Каждая пара признаков наследуется независимо от другой пары. Это закон независимого наследования.

Разумеется, Мендель не знал, что эти положения со временем назовут первым, вторым и третьим законами Менделя.

Современная формулировка законов

Первый закон Менделя

Закон единообразия гибридов первого поколения -- при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака -- на современном языке это означает гомозиготность особей по этому признаку.

Второй закон Менделя

Закон расщепления -- при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -- рецессивный, называется расщеплением. Следовательно, расщепление -- это распределение (рекомбинация) доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Расщепление потомства при скрещивании гетерозиготных особей объясняется тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена. Цитологическая основа расщепления признаков -- расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе (рис.4).

Рис.4.

Пример иллюстрирует скрещивание растений с гладкими и морщинистыми семенами. Изображены только две пары хромосом, в одной из этих пар находится ген, ответственный за форму семян. У растений с гладкими семенами мейоз приводит к образованию гамет с аллелем гладкости (R), а у растений с морщинистыми семенами - гамет с аллелем морщинистости (r). Гибриды первого поколения F1 имеют одну хромосому с аллелем гладкости и одну - с аллелем морщинистости. Мейоз в F1 приводит к образованию в равном числе гамет с R и с r. Случайное попарное объединение этих гамет при оплодотворении приводит в поколении F2 к появлению особей с гладкими и морщинистыми горошинами в отношении 3:1.

Третий закон Менделя

Закон независимого наследования -- при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Менделеевский закон независимого наследования можно объяснить перемещением хромосом во время мейоза (рис.5). При образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расположение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах. Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2n , где n - гаплоидное число хромосом. У человека n=23, а возможное число различных сочетаний составляет 223=8 388 608.


Рис.5. Объяснение менделевского закона независимого распределения факторов (аллелей) R, r, Y, y как результата независимого расхождения разных пар гомологичных хромосом в мейозе. Скрещивание растений, отличающихся по форме и цвету семян (гладкие желтые Ч зеленые морщинистые), дает гибридные растения, у которых в хромосомах одной гомологичной пары содержатся аллели R и r, а другой гомологичной пары - аллели Y и y. В метафазе I мейоза хромосомы, полученные от каждого из родителей, могут с равной вероятностью отходить либо к одному и тому же полюсу веретена (левый рисунок), либо к разным (правый рисунок). В первом случае возникают гаметы, содержащие те же комбинации генов (YR и yr), что и у родителей, во втором случае - альтернативные сочетания генов (Yr и yR). В результате с вероятностью 1/4образуются четыре типа гамет, случайная комбинация этих типов приводит к расщеплению потомства 9:3:3:1, как это и наблюдалось Менделем.

Грегор Иоганн Мендель (1822-1884) — австрийский ученый, основоположник генетики. Впервые применил гибридологический метод и обнаружил существование наследственных факторов, впоследствии названных генами.

Первый закон Менделя

Г. Мендель скрестил растения гороха с желтыми семенами и растения гороха с зелеными семенами. И те, и другие были чистыми линиями, т.е. гомозиготами:

Первый закон Менделя — закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).

Второй закон Менделя

После этого Г. Мендель скрестил между со бой гибриды первого поколения:

Второй закон Менделя — закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определенном числовом соотношении: особи с рецессивным проявлением признака составляют ¼ часть от общего числа потомков.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть рецессивный, называют расщеплением . В случае
моногибридного скрещивания это соотношение выглядит следующим образом: 1AA:2Aa:1aa, т.е. 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании); при дигибридном скрещивании — 9:3:3:1 или (3:1) 2 ; при полигибридном — (3:1) n .

Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называют неполным доминированием . Примером неполного доминирования служит наследование окраски цветков растения ночная красавица:

Цитологические основы единообразия первого поколения и расщепления признаков во втором поколении

Они состоят в расхождении гомологичных хромосом и образовании гаплоидных половых клеток в мейозе.

Гипотеза (закон) чистоты гамет

Она заключается в следующем:

  1. при образовании половых клеток в каждую гамету попадает только один аллель из аллельной пары, т.е. гаметы генетически чисты;
  2. у гибридного организма гены не гибридизуются (не смешиваются) и находятся в чистом аллельном состоянии.

Статистический характер явления расщепления

Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.

Анализ потомства

Анализирующее скрещивание позволяет установить гомозиготен или гетерозиготен организм по доминантному гену. Для этого скрещивают особь, генотип которой следует определить, с особью, гомозиготной по рецессивному гену. Часто скрещивают одного из родителей с одним из потомков. Такое скрещивание называется возвратным .

В случае гомозиготности доминантной особи расщепления не произойдет:

Третий закон Менделя

Г. Мендель провел дигибрвдное скрещивание растений гороха с желтыми и гладкими семенами и растений гороха с зелеными и морщинистыми семенами (и те, и другие чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании (расщепляется 3:1), т.е. независимо от другой пары признаков.

В итоге были получены следующие данные:

  • 9/16 — растения гороха с желтыми гладкими семенами;
  • 3/16 — растения гороха с желтыми морщинистыми семенами;
  • 3/16 — растения гороха с зелеными гладкими семенами;
  • 1/16 — растения гороха с зелеными морщинистыми семенами.

Третий закон Менделя — закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идет независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.